
PARALLELIZATION OF ROCKET ENGINE SIMULATOR

SOFTWARE

(P.R.E.S.S.)
f

RESEARCH SUMMARY REPORT

/'/)

¢-

4

!

/

Principal Investigator

Dr. Ruknet Cezzar, Associate Professor

Department of Computer Science

Hampton University

Hampton, Virginia 23668

email: cezzar@cs, hamptonu, edu

Technical Officer

Dr. Don Noga

Mail Stop 501-2
NASA Lewis Research Center

21000 Brook Park Road

Cleveland, Ohio 44135

Grant Number: NAG3-1792

Grant Period: 3 Years

Start date: October 19, 1995

End Date: October 18, 1998

Extention Date: October 18, 1999

(October 18, 1998)

TABLE OF CONTENTS

Section Subiect Paze

o Background ... 1

o Research Progress Overview 2

2.1 Message Passing Interface (MPI) Refresher

2.2 Analysis of the RESSAP code

2.3 Using MPI for the RESSAP code

o Trends in Distributed Computing 7

o Challenges and Remedies 8

4.1 Technical

4.2 Staffing

4.3 Equipment and Software

q Conclusion ... 9

REFERENCES .. 10

APPENDICES ... 11

A: Authorization for No-cost Extension of NAG3-1792

B: Internal Memorandum Concerning Spending Rate

C: Acquisition of new GASP module for PUMPDES/TURBDES

D: Acquisition of Miscellaneous Modules Including RESSAP

E: A Typical Debugging Trace for A RESSAP Run

F: Parts of RESSAP Source Code Relevant to MPI

ii

1. Background

ParaUelization of Rocket Engine System Software (PRESS) project is part of a collaborative

effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF),

and Jackson State University (JSU).

The third-year funding, which supports two graduate students enrolled in our new Master's

program in Computer Science at Hampton University and the principal investigator, have been

obtained for the period from October 19, 1997 through October 18, 1998. The interim progress

report dated April 21, 1998 outlines the plans and progress in its relevant sections:

Background

Research Progress Overview

Current Research Activities (October 1997 through April 1998)

Future Plans

Conclusion

A noteworthy activity since that time was no-cost extension for an additional year with

revised budget. The revised budget provides slightly more attractive stipend and tuition support

for two graduate research assistants and provides release time and full time summer support for

the principal investigator. Although, as shown on the authorization letter (See Appendix A) on

July 7, 1998, the internal budget by Hampton University's research and development office has

only recently been entered into the computer system. This is due to the revised budget applying

only to FY 99, starting on October 19, 1998 for this project. The project has fallen behind in

spending rate (See Appendix B). We discuss this in more detail in Section 4.2.

The key part of the interim report dealt with the acquisition of the working version of

GASP (gas properties) module, referred to as GASPSheer. That was necessary for debugging

and obtaining an executable for PUPMDES/TURBDES software which has been lent earlier to

Hampton University under a software agreement. There is also the discussion of PI's

presentation at the Fifth Annual HBCU Conference, April 9-10, 1997, Cleveland, Ohio. The

presentation basically outlines distributed computing strategies for NASA's Fortran-based

software, in particular, the RENS and NPSS software at Lewis Research Center. The

presentation focuses on the major challenge involving lack of support for Fortran-based software

by distributed computing standards and software tools such as CORBA (Common Object Request

Broker Architecture). As its name indicates, this most popular distributing computing standard,

only supports object-oriented languages such as C + +, Smalltalk, and Java. More recently, it

also provides limited support for Ada. Finally, there was some discussion of the work on C + +

wrappers, in our case, using Microsoft Fortran 5.1 and Borland C + + 5.0, on PC platform.

1

2. Research Progress Overview

In this section, we give an overview of progress since the interim report filed in April 1998.

As mentioned in the interim report, an important aim for this period was experimentation with

MPI (Message Passing Interface) toward a demonstration of distributed computing over a local

area network. Initially, the aim was to use a working version of PUMPDES or TURBDES

software using the new GASP obtained from NASA LeRC with a new software agreement (See

Appendix C). Later, with acquisition of what became known as SOURCCDS-folder modules

under another software agreement (See Appendix D), it became clear that using the main

executable module of that package would be more productive. That main module is

RESSAP.FOR, where RESSAP is an acronym for Rocket Engine System Software Analysis and

Performance. RF_SSAP.FOR is a preliminary source code, and has not been thoroughly tested.

However, RESSAP calls both PUMPDES and TURBDES modules, as well as other modules.

Thus, it appeared that RESSAP would be a good candidate for experimentation with MPI.

2.1 Message Passing Interface (MPI) Refresher

MPI and its implementation on Hampton University's SunOS based LAN have been

discussed in detail in the Research Summary Report submitted on September 2, 1997. As a

recap, we should briefly mention that it is a message passing interface standard intended

primarily for tightly-coupled distributed-memory systems. However, a SunSparc version

MPICH exists, and this implementation provides a standard protocol, through a library and

executable shells, for message exchanges. Note carefully that the underlying issues of remote

execution is to be done by the system, somehow, some way. Through Unix shell scripts (e.g.

MPIRUNO, and using SunOS and Sun's NFS (Network File System) facilities, it is possible to

assign processes to different network nodes. Indeed a cursory demo package which can also run

on ACCL LACE cluster have been discussed in detail at that report. There, sample demos for

MPI, as well as PVM, were discussed. The computation revolves a two-dimensional 50x50 grid

using Jacobi's algorithm to solve the Laplace's equation. The ultimate aim of that computation

is to solve a linear partial differential equation.

The best source for MPI is shown in [3]. There some 128 routines and how those standard

library routines can be invoked are discussed. The parameter blocks of calls such as

MPI_SEND, MPI_RECV, MPI_SENDRECV_REPLACF,, etc. are long. They are also highly

complex since the arguments are IN, OUT, or INOUT. At any rate, the focus of this reference

source is on the intricacies of message passing among process groups and among processes

within process groups. The discussion pays no attention whatsoever on the implementation

issues involving various hardware problems. In effect, all the examples involve a single

multiprogrammed processor node which run processes concurrently. Various fine issues such

as deadlocks, barrier synchronization, producer-consumer problem and the like are discussed in

great detail. Additionally, there are various calls for error handling and profiling. The 128

routines which unfortunately makes MPI huge and complicated also involve various Fortran 90

type constructs for data-parallel execution of loops involving arrays. In a sense, the focus is on

fine-grain parallelism which is also supported by Fortran 90. For instance, one of the best

examples, and there are only few examples, involve Jacoby iteration (Section 2.5, pp. 39-43).

2

Although MPI is intended for fine-grain parallelism with symmetric topologies of process

groups, such as two or three dimensional meshes, we intend to use it for course grain

parallelism. The main idea is to have an executable Fortran code, such as RESSAP (Rocket

Engine System Sizing and Analysis Program), and use MPI to run its procedures on different

network nodes. In addition, as will be discussed shortly, the fine grain parallelism in some of

the modules, such as TABLE and NEWTON, can be exploited via so called intracommunicators.

However, there is a question mark on that issue, since message passing delays axe significant

in a LAN. Therefore, the fine-grain parallelism over a LAN will probably incur too high a

communication overhead. The suitability of MPI for parallelization of GASP which is called

most frequently by PUMPDES/TURBDES software, is unclear to us at this time.

2.2 Analysis of the RESSAP Code

Our familiarity with this code came from the content of SOURCCDS which, as mentioned

earlier, was lent to Hampton University. In that directory, there are various source code

modules left over from Dean Scheer's work. Through experimentation, and using the code from

the earlier TURBDES and PUMPDES system, we were able to obtain an executable a.out which

corresponds to RESSAP main module. The listing in Figure 1 gives all the source modules

along with inputs and outputs. We must mention that there is no documentation about RESSAP

such as hierarchy charts showing the logical relationships and interfaces.

INPUT
........................

GPGG.DAT
CPLL.DAT
CPTP.DAT
CSTARGG,DAT
CSTARLL.DAT
CSTARTP.DAT
DEFALT,DAT
DFTPMP,DAT
DFTTRB.DAT
GAMMAGG.DAT
GAMMALL.DAT
GAMMATP.DAT
INTURB.DAT
ISPTHPERGG.DAT
ISPTHPERLL.DAT
ISPTHPERTP.DAT
MACHGG.DAT
MACHLL,DAT
MACHTP.DAT
MACP.DAT
MK480TRB.DAT
PRGG.DAT
PRLL.DAT
PRTP.DAT
REINPT.DAT
RLIOSTG2.DAT
TSTAGGG.DAT
TSTAGLL.DAT
TSTAGTP.DAT
VISCGG.DAT
VISCLL.DAT
VISCTP.DAT

MODULES

ressap,for
pumppd.for
turbpd.for
gasp.for
fanno.for

setup.for

sgasp,for
xbldlg.for
xcstar.for
xenth.for

xispid.for
xleak.for
xnewton.for

xpfit.for
xpmphd.for
xreadp.for
xstagt.for
xtable.for
xtcapd.for

OUTPUT

forO15,dat
fort.20

Figure 1: Source modules for a working version of RESSAP software

3

In this configuration, PUMPPD.FOR and TURBPD.FOR correspond to the previous

versions of PUMPDES and TURBDES software. Note that, even though there is a calling

sequence, as the debugging trace shown in Appendix E shows, these two modules are largely

independent of one another. However, they do call and share various other subroutines as

shown in Figure 2.

PUMPPD.FOR: TURBPD,FOR:
..........................

CALL SETUP CALL SETUP
CALL GASP CALL GASP
CALL GASP CALL SETUP
CALL SETUP CALL GASP
CALL GASP CALL SETUP
CALL GASP CALL GASP
CALL GASP CALL TABLE
CALL TABLE CALL TABLE
CALL NEWTON CALL GASP
CALL GASP CALL GASP
CALL NEWTON CALL TABLE
CALL GASP CALL GASP
CALL LEAK CALL GASP
CALL GASP CALL TABLE
CALL GASP CALL NEWTON
CALL BLDLG CALL GASP
CALL PMPHD
CALL GASP

(appears 12 times in 12 places)

Figure 2: PUMPPD and TURBPD modules shadag other sub-modules.

As is clear, SETUP, GASP, NEWTON, and TABLE subroutines are shared. The SETUP

is a plotting program for the old VAX/VMS system, and therefore, need not be considered.

Instead of leaving it out, we stubbed it. Thus, a second tier process group involving just GASP,

NEWTON, and TABLE can be established. To reiterate, the first process group consists of only

2 processes: PUMPPD and TURBPD. This is a highly unconventional use of MPI since, as

mentioned earlier, MPI is most suitable for a very l;_rge number of processes organized

symmetrically, such as the grid structure.

As the first step, we needed an executable which runs to completion and reports a very

large amount of numerical data in for0015.dat. If the:re are error message, such as non-

convergence reported by NEWTON subroutine, those a'e output on fort.20. Unfortunately,

perhaps due to migration from VAX/VMS based sys:em to Unix, there are arithmetical

exceptions having to do with zero divides throughout the code. We have spent a great deal of

time in debugging so as to be able to at least see what subloutines are run and in what sequence.

Appendix E gives a sample of the kind of debugging trace we attempted by embedding Fortran

PRINT commands in appropriate places. This also gives a better idea about how, for instance,

PUMPPD and TURBPD run the second tier sub-moduks, including NEWTON and TABLE
which are shared.

4

2.3 Using MPI for RESSAP Code

From the analysis above, it is best to use MPI's point-to-point communication interface in

between the two modules PUMPPD and TURBPD. In this case, there will be MPI's

intercommunication mechanism for the two sides of the point-to-point communication link.

Having established message exchanges between PUMPD and TURBPD. One important

parameter is MPI_COMM_WORD which is the default communicator that specifies the

communication domain. This depends on the environment and specific implementation. For

instance, suppose we have used the following process group:

File name: pgroup

apple 0/users/cezzar/press/codes/ppp/ressap

lemon 1 /users/cezzar/press/codes/ppp/ressap

basil 1/users/cezzar/press/codes/ppp/ressap

In this case, MPI_COMM_WORLD will be established as the host machine apple with id 0

initiating the run and the access to the other two machines through SunOS remote execution

facility. Moreover, as a result of MPIRUN shell script, at least 3 initial processes, with ids 0,

1, 2, .. will be set up. As is mentioned earlier, the emphasis of MPI is with the intricacies of

the logical aspects of process communications without attention to implementation issues. Once

this is done, Figure 3 shows schematically and in an oversimplified way, how the MPI function

calls may be embedded in the three modules. The numbers 0, 1, 2 refer to the process ids,

where process 0 is the controlling process which must call MPI_INIT and only once.

RESSAP PUMPPO TURBPD

call MPI INIT
call MPI-COMM SIZE
call MPI-COMM-RANK

.. the source code

call MPI SEND (1)
call MPIZRECV (1)

call MPI SEND (2)
call MPIZRECV (2)

,I

• the source code

call MPI FINALIZE

call MPI SEND (2)
call MPI=RECV (2)

.. the source code

call MPI SEND (0)
call MPI=RECV (0)

.. the source code

etc.

call MPI SEND (0)
call MPI_RECV (0)

.. the source code

call MPI SEND (1)
call MPISRECV (1)

.. the source code

eTc.

Figure 3: A Schematic depiction of MPI function calls in RESSAP

5

Naturally, the MPI calls have a highly complex parameter structure where each parameter

is of type IN, OUT, and INOUT. In addition, the message is strongly typed, where it is

difficult to pass arguments when Fortran subroutines are converted to MPI processes. The

following discussion elaborates on this issue.

The embedded MPI call (See Appendix F for details) for sending a message to TURBPD

and receiving an acknowledgement was, in effect, a substitute for the subroutine call:

CALL TURBPD(KFLUID,KTRBH,KINPT,NSTGH,PIHTRB,TIHTRB,HPHPMP,

I WTRBH,RPMH2P,UTMH2T,AOVRDH_CNOHNH,ALPH2H_CLRH,HPTRBH,DMTRBH,
2 UMTRBH,UCTR8H,ETATSH,ETATTH,HIHTRB,DIHTR8,P2HTRB,T2HTRB,
3 H2HTRBsD2HTRB_S2HTRB,KTYPEHjANSQDHsADMH,ZIH_CPIH,GAUIH _
4 UTTRSH,HTRIH,HTR2H)

In the example, because MPI requires typed messages, we were able to send only the first

argument KFLUID as an integer value. Moreover, we used the tag field of the message to

indicate to the other process that this is the first argument. What if we wanted to pass all of the

arguments to TURBPD process. Using a separate MPI SEND call for each argument, with the

appropriate tags indicating which argument, would be unwieldy. In the case of Fortran, it is not

possible to pass the parameters as a block and sending just the pointer to that block. That is a

dangerous practice even if allowed, as with C. The best solution, in the case of Fortran, is to

pass all the parameters as a COMMON block. If for some reason that cannot be done, we have

no choice but prepare an array for each sequence of arguments of the same type (e.g. say

REAL*8) and then pass that array to the receiving process. Note that, in the case above, we

cannot do this for all the arguments since the arguments are of different types.

Therefore, there may need to be a reordering of argt_ments, where say all integer arguments

first, then all real arguments, and so on. In that case, for each sequence, as separate Fortran

array needs to be prepared. Thus, if many arguments need to be passed to another process, the

coding of MPI calls will be highly complex. We may be tempted to pass the list of names of

these arguments, as shown above, as a string in a single message. Aside from limitations on

message length, such an approach would accomplish little since what is required is the values

of the arguments.

2.4 HBCU Conference Attendance

We have submitted the abstract of our work to the Fourth HBCU Conference, April 8-9, 1997,

Cleveland, Ohio. We also prepared a poster paper format and presented that on the second day

of the conference. The presentation focused on the then current distributed computing packages

MPI, PVM [4], and CORBA (COmmon Object Reque.gt Broker Arthictecture). As will be

briefly discussed in the next section, CORBA is a ral_idly growing in use and popularity.

Indeed, one key aspect of our presentation at the conference was pointing out the lack of support

for Fortran based software. This primarily stems from the fact that Fortran is not an object-

oriented language. We have also pointed out various alternatives such as C + + wrappers around

Fortran code so that tools like CORBA can be utilized. The last viewgraph of our presentation

included some recommendations which is worth reiterating. The following is verbatim recap

in a more concise format:

6

Why not a more radical approach?

Redesign software based on Fortran 77 and Older along objectroriented

principles

Translate the source code to an object-oriented programming language
(C + + or Java)

Biting the Bullet: Cons and Pros

Cons:

• Far greater price to pay for "going distributed"

• Performance (Fortran code probably runs faster)

• Physics and engineering-oriented NASA staff's close

foregone

familiarity with Fortran is

Pros:

• Redesign and reworking will improve the quality

• Much easier to provide graphics-based user interfaces

• Going distributed is much easier

• Clear goals for and better utilization of grantees..

3. Trends in Distributed Computing

CORBA, which has been discussed in conjunction with the NPSS design goals of NPSS in

[5], was featured in a recent issue of Component Strategies (formerly known as Object Magazine

[6]. The article discusses the recent work of Object Management Group(OMG) in e×tcnding

CORBA's scope with respect to Java interface and support for Ada. It also disctJsses plans for

CDL (Component Definition Language) which augments its IDL (Interface Definition Language).

The article concludes with CORBA products becoming more robust and enjoying wider use in
the future.

This month's issue of Communications of the ACM features CORBA on its cover and

contain several articles [7-11]. Practically all aspects and future promise of thJs b_;h_v p,_pular

distributed computing standard are covered. An interesting aspect regardint,. _.x._J:tP,'k's

increasing popularity is that initially it was designed as a flexible tool with riaJrow ::_',,pe.

Perhaps one reason is simply the lack of other distributed computing tools. Another ir,_c_:_ting

aspect which is pointed out in article on CORBA 3.0 [9] is that CORBA can be regarded as an

application integration tool. The same article discusses three significant new CORBA features:

Portable Object Adapter.

From the foregoing, it appears that close attention should be paid to CORBA a,_ a viable

distributed computing and application integration tool. As for MPI and PVM which is not

further discussed in this report, their scope is narrow, and covers only the parallel machines or

local networks with distributed operating systems. By the distributed operating system, we mean

something like Sun's NFS(Network File System, Solaris threading facilities, and the like.

7

4. Challenges and Remedies

4.1 Technical

All the Fortran based rocket engine design and simulation code that has been lent Hampton

University under several software agreements as part of this (PRESS) project uses Unix

platform. However, unfortunately, from the beginning of August 1998 until the end of

September, our Unix SunOS based local area network has been inaccessible. At the end of

September 1998, largely due to the needs of this project, a very limited access to only a single

node of the local net was provided. There are no remote login, email, or even printing

facilities. Remote login facilities naturally effect the implementation of MPI, as was pointed out.

Meanwhile, the ACCL LACE cluster for which we have painstakingly obtained an account has

not been doing so well either! Indeed, since luIy 1998, we have been unable to access that

cluster, perhaps due to the account being discontinued.

4.2 Staff'mg

Unfortunately, for the entire third and final year of this project, we were unable to enlist the

help of graduate student research assistants. This, despite the ample availability of funds in the

budget, and for two reasons. One is the economy doing well and our graduate students having

far more attractive alternatives. The other, which is more important, is that our graduate

program has shrunk from 16 to only a few students.

The revised budget which was submitted as part of the one-year no-cost extension provides

support for two graduate students with higher stipends and tuition allowance limits. However,

as pointed out in the introduction, our internal development budget has been entered into the

computer system a few days ago. Based on this, we are in a position to aggressively search for

graduate student assistants. One plan we have is to enlist r.he help of a colleague, Robert Willis,

in sending emails to other HBCUs.

4.3 Equipment and Software

As was pointed out in the very first interim report of this project, at the start of the project, we

were not able to obtain a powerful personal computer platlorm. Instead, we ended up with two,

i00 MHz desktop and 75 MHz laptop, with limited memory and hard disk unit capacity of 1.6

GB and .75 GB respectively. However, since Unix was the main platform for experimenting

with Fortran based code, this did not much matter. However, if we are to move away from the

Unix platform and base our work during the one-year extension period on PC platform, these

may not be sufficient.

To this end, on the revised budget, $ 5K for hardwu'e and $ 7K for software. Among

items detailed are Lahey Fortran for PC platform and Visibroker (CORBA + Java) distributed

computing tool. However, these funds could be applied t9 software tools serving the same or

similar purpose. On the other hand, it is clear that the funds are not sufficient for obtaining

such integrated design environment[13] tools as I-SIGHT. At this time, the only significant PC

platform software we have is Borland's C+ + 5.0 with Java extension (jvm 1.0, the oldest).

8

5. Conclusion

We have outlined our work in the last half of the funding period. We have shown how a

demo package for RESSAP using MPI can be done. However, we also mentioned the

difficulties with the UNIX platform. We have reiterated some of the suggestions made during

the presentation of the progress of the at Fourth Annual HBCU Conference.

Although we have discussed, in some detail, how TURBDES/PUMPDES software can be

run in parallel using MPI, at present, we are unable to experiment any further with either MPI

or PVM. Due to X windows not being implemented, we are also not able to experiment further

with XPVM, which it will be recalled, has a nice GUI interface. There are also some concerns,

on our part, about MPI being an appropriate tool. The best thing about MPI is that it is public
domain.

Although and plenty of documentation exists for the intricacies of using MPI, little

information is available on its actual implementations. Other than very typical, somewhat

contrived examples, such as Jacobi algorithm for solving Laplace's equation, there are few

examples which can readily be applied to real situations, such as in our case.

In effect, the review of literature on both MPI and PVM, and there is a lot, indicate

something similar to the enormous effort which was spent on LISP and LISP-like languages as

tools for artificial intelligence research. During the development of a book on programming

languages [12], when we searched the literature for very simple examples like taking averages,

reading and writing records, multiplying matrices, etc., we could hardly find a any! Yet, so

much was said and done on that topic in academic circles. It appears that we faced the same

problem with MPI, where despite significant documentation, we could not find even a simple

example which supports course-grain parallelism involving only a few processes.

From the foregoing, it appears that a new direction may be required for more productive

research during the extension period (10/19/98 - 10/18/99). At the least, the research would

need to be done on Windows 95/Windows NT based platforms. Moreover, with the acquisition

of Lahey Fortran package for PC platform, and the existing Borland C+ + 5.0, we can do work

on C+ + wrapper issues.

We have carefully studied the blueprint for Space Transportation Propulsion Integrated

Design Environment for the next 25 years [13] and found the inclusion of HBCUs in that effort

encouraging. Especially in the long period for which a map is provided, there is no doubt that

HBCUs will grow and become better equipped to do meaningful research. In the shorter period,

as was suggested in our presentation at the HBCU conference, some key decisions regarding the

aging Fortran based software for rocket propellants will need to be made. One important issue

is whether or not object oriented languages such as C + + or Java should be used for distributed

computing. Whether or not "distributed computing" is necessary for the existing software is yet

another, larger, question to be tackled with.

9

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[lO]

[11]

[12]

[131

[14]

[15]

[16]

[17]

[18]

Huzel, D. K. and Huang, D. H. Modern Engineering for Design of Liquid-Propellant

Rocket Engines (Second Printing), AIAA, Inc., Washington, D.C. 20024, (1992).

Sutton, G. P. Rocket Propulsion Elements: An Introduction to Engineering of Rockets

(6th Edition), John Wiley and Sons, Inc., New York, (1992).

Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J. MPI: The

Complete Reference, The MIT Press, Cambridge, Massachusetts (2nd Printing, 1997).

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunder'am, V. PVM:

Parallel Virtual Machine, A User's Guide and Tutorial for Networked Parallel

Computing, The MIT Press, Cambridge, Massachusetts (Third Printing, 1996)

Williams, A., Follen, G., Claus, R., Blech_ R, et. al. "Key Technologies for

Implementing An NPSS," Technical Memorandum, NASA Lewis Research Center,

February 1997, [DRAFT].

Guttman, M. and Applebaum, R. "The Next Generation of CORBA," Component

Strategies, August 1998, pp. 40-46.

Seethamman, K. "The CORBA Connection," Comm. of ACM, vol. 41, no. 10

(October 1998)

Siegel, J. "CORBA and the OMA in Enterprise Computing," Ibid.

Vinoski, S. "New Features for CORBA 3.0," Ibid.

Schmidt, D. C. "Evaluating Architectures for Multithreaded Object Request Brokers,"
Ibid.

Haggerty, P. and Seetharaman, K. "The Benefits of CORBA-based Network

Management," Ibid.

Cezzar, R. A Guide to Programming Languages: An Overview and Comparison,

Artech House Publishers, Inc., Norwood Mass. 02062, 1995.

Hemminger, J. A. Space Transportation Propulsion Integrated Design Environment

(STP/IDE), presentation at NASA Lewis Research Center, July 29, 1998.

Follen, G. Williams, A., Blech, R, and Drei, I',.V. (NASA Lewis), Apel, A. (P&W

East Hartford), Byrd, R. (P&W, West Palm Beach), Gardocki, M. (G.E. Aircraft

Engines), Crawford, N. (AUiedSignal Engines), Ashleman, R. (Boeing), McNelly, M.

(Allison Engine Co.) "Numerical Propolsion System Simulation Architecture

Definition," NASA TM 107343, November 1996.

Miller, B., Szuch, J. R., Gauigier, R. E., Wood, J.R. "A Perspective on Future

Directions in Aerospace Propulsion System Simulation," Lewis Research Center,

NASA TM 102038, 1989.

Reese, D. S., and Luke, E., "Object Oriented Fortran for Development of Portable

Parallel Programs, Mississippi State University NASA Grant NAG3-1073 and NSF

cooperative agreement ECD-8907070).

Blech, R.A. and Arpasi, D.J., "An Approach to Real-Time Simulation Using Parallel

Processing,", NASA TM 81731, 1981.

Jell, Thomas, "Building Multimedia Application Systems Using Component

Technology," WEB APPS Solutions Report W4. Object Expo/JAVA Expo '97, New

York City, New York, May 2, 1997 (presentation viewgraphs).

10

APPENDIX A: Authorization for No-cost Extension of NAG3-1792
National Aeronautics and
Space Administration

Lewis Research Center
Cleveland, OH 44135-3191

RaiSe tO _Rn _': 0612 July 7, 1998

Hampton University

Office of Sponsored Programs

Hampton, VA 23668

Subject: NAG3-1792, Supplement No. 3

In accordance with the clause of the grant entitled, "Extensions", the period of performance

completion of the subject grant is hereby extended from October 19, 1998 to October 18,

1999.

This authorization is conditioned upon the completion of the grant objectives within the

current level of funding.

This letter of authorization constitutes Supplement No. 3 to the subject grant.

CC:

ONRRO/Atlanta

: ,. -_ It

11

To: /_ • "

From: " '

Returri r]

Keep or Toss []

APPENDIX B: Internal Memorandum Concerning Spending Rate

HAMPTON UNIVERSITY
HAMPTON, VIRGINIA 236_8

OFFICE OF THE VICE PRESIOENT FOR

BUSINESS AFFAIRS AND TREASURER

(757) 727-5213

FAX _757_ 727-5084

MEMOIL-XND UM

TO:

FROM:

Dr. Ruknet Cezzar

Computer Science Department

Leon L. Scott /_/_Jf

_IFBu_inessVice President

A.tTairs and Treasurer

DATE: July 15, 1998

RE: Unexpended Grant Funds

Our records indicated as of, _ you have expended only_52 percent of your

award which is due to expire.on October 18, 1999. I am closely monitoring the spending rate of

all grants. You must adjust your spending to meet the requirements of your award. Please work

with the Grants Management Office to spend.

Grant NO. : 5-24048 Grant Description: NASA-Lewis Parallelization of Rocket Engine

$293,050

Expenditures and Balance Percent

Axailah_ Used

$ 153,178 $ 139,872 52

Thank you for your cooperation.

CC: Dr Calvin Lowe, Vice President for Research

Dr. JoAnn Haysbert, Assistant Provost

Dr Johnnye Jones, Dean, School of Science

HAMPTON INSTITUTE

THE UNOERGRAQUATE COLLEGE

12

GRAOUATE COLLEGE
CD;-_EGE OF

CONTINLANG EC'UC.:," .?_.

APPENDIX C: Acquisition 0-fnew GASP module forPUMPDES/TURBDES

Na[ional Aeronabt_cs and

Space Adrnm_stratlon

Lewis Research Center

Cleveland, OH 44135-3191

,,=, :, .:, ::. 5 8 8 0 December 22, 1997

Dr. RukneL Cezzar, Associate Professor

Departmen: of Commuter Science

Science and Technology Blag, Room 120

Hampton University

Hampton, VA 23668

Dear Dr. Cezzar:

Per the recently signed Software Use Agreements, enclosed ,you '.v:l_

find three 3.5-inch diske5tes containing the For=ran source code

for The GASP (I diskete) and GASP!us (2 diskettes) software.

NoTe the fo _,low_ng:

There are manuals available for OoTh packages. However, we

w__ "- anave no spare copies aE :his Lime, so it :_ __ke while :_

get cooies made. Let us know if you wane one or both of

them.

(2

(3

The GASP source code is that used by Dean Scheer when he

developed the PUMPDES and TURBDES codes for which you wan: To
use it. Bob Hendricks inserted some lines up front to pr:nT

out hydrogen property tables. You will have :o remove
these lines and make whazever modifications are required

to ge= it to run with the noted codes.

The GASPIus code is configured to run in a DOS-based, stand-

alone mode. You can use it :o check cue the results obtained

wi=h GASP software.

I hope you find both of these software routines useful in carrying

out your work under NASA Grant NAG3-!792.

Sincerely,

'-/Joseph A. Hemminger

Engine Sysmems Technology Branch

Turbomachinery & Promu!sion Systems

3 Enclosures

13

APPENDIX D: Acquisition of Misceilanous Modules Including RESSAP

National Aeronautics and

Space Administration

Lewis Research Center

Cleveland, OH 44135-3191

Reply [o ARn 0t 588O

Dr. Ruknet Cessar, Associate Professor

Depar=ment of Computer Science

Hampton University

Science and Technology Building

Room 120

Hampton, VA 23668

_ear Dr. Cezzar:

Enclosed you will find :hree 3.5" fl]ppy diske:_es containing

archival files from Dean Scheer's wo:k on the PumDdes and

Turbdes Codes which have already bee2 delivered :o you.

They include:

Documentation files (in the T_DESDOC folder; for Pumpdes,

Turbdes, and other routines; Word Perfect format;

=eadable in MS Word>

2. For:ran source files (in :he SOURCCDS folder:

° Miscellaneous supporting files from his VAX accoun: (in

the MISCVAXF folder).

_ hope you fina :hem useful in carrying out :ne work under

NASA Grant NAG3-1792.

(Joseph A. Hemminger

EnmLne Systems Technology Branch

Turbomachinery and Procu!sion SysLems Division

3 Enclosures

14

APPENDIX E: A Typical Debugging Trace for A RESSAP Run

ressap: returned from REAOFILE a090
ressap: returned from ENTHALPYLEVEL a128
ressap: returned from THEORISP a130
ressap: returned from STAGTEMP a132
ressap: returned from CSSTARSUB a134
ressap: returned from TCAPD a146
Hello I'm pumppd!
pumppd: returned from SETUP a270
pumppd: Parameters passed to GASP:

1 15 42.400000000000 168.00000000000 O.
pumppd: returned from GASP a276
pumppd: returned from GASP a283
pumppd: returned from GASP a319
pumppd: returned from TABLE a374
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a49 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 1
pumppd: returned from NEWTON a491 3
LAne 582: 0.24242338831148 0.35570149921394 O.
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 = 1
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 = I
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 : I
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 I
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 I
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 1
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 1
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 1
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 1
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 1
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 1

Flag KFLGIO =
Flag KFLGIO :
Flag KFLGIO =
Flag KFLGIO :
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =
Flag KFLGIO =

Flag KFLG20 =

Flag KFLG20 =

Flag KFLG20 =

Flag KFLG20 =

Flag KFLG20 =

Flag KFLG20 =

Flag KFLG20 =

Flag KFLG20 =

O. 0

15

APPENDIX E: A Typical Debugging Trace for A RESSAP Run (Cont'd)

pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP a555
pumppd: returned from NEWTON a557 Flag KFLG20 =
pumppd: returned from GASP 8570
pumppd: returned from LEAK s579
pumppd: returned from GASP s595
pumppd: returned from GASP s606
Line 713: O. O. O.
Line 735: 1.0000000000000

pumppd: returned from BLDLG s661
FRICFB = 9.3778428720395D-02
BNDRAD= -4.6722675622228
HYDOBN = 9.20307355575700-02
pumppd: calling PMPHD 729
pumppd: returned from PMPHD s726
pumppd: returned from GASP s775
pumppd: returning to ressapl
ressa_: returned from PUMPPO a168
ressa=): returned from FANNO a178
ressa): returned from SGASP s199
ressa): returned from FANNO s226
ressa): returned from TURBPD s244
ressa): returned from PUMPPD s270
ressa;): returned from FANNO s283
ressai): returned from NEWTON s300
ressa): returned from TURBPD s324
ressa): returned from FANNO s333
ressa;): returned from FANNO s337
ressa): returned from SGASP s349
ressa4>: returned from FANNO s358
ressa): returned from NEWTON s374

Go to flag 375 0
Successful completion of callsl

0.60876135403851 O.

I6

APPENDIX F: Parts of RESSAP Source Code Relevant to MPI

C***************** MPI related declarations *****************
parameter (control id=O)

C Control-±d is the ±9 of the process, in this case process 0

CHARACTER*20 s_msg
INTEGER i_msg, myrank, ierr, status(MPI STATUS SIZE)

C Note: MPI_STATUS_SIZE is system implementation depe6dent

REAL*8 r_msg
c

c Globai variables for ressap.for
C

COMMON /globals/ my_id, nprocs
C These are the process id and number of processes
C
C*************** End of MPI related deciarations ************
C
C
C ROCKET ENGINE SYSTEM PRELIMINARY DESIGN CODE
C

C
C
C

C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 MU,MUL,MUV,K,KL,KV,ISPGG,ISPTP,ISPLL,ISP,ISPACT,MACHGG,

I MACHTP,MACHLL,MACH,MIX,LEVELI,LEVEL2,LEVEL3,LSTAR,LF,NSSH2P,
2 NSH2P,NSSO2P,NSO2P,LPRIME,LN,ISPSV
DIMENSION ISPGG(10,11,14),ISPTP(10,11,14),ISPLL(10,11,14),

c TSTAGGG(10,11),TSTAGTP(10,11),TSTAGLL(10,11),
c CSTARGG(lO,11),CSTARTP(10,11),CSTARLL(10,11),
c CPGG(10,11,15),CPTP(10,11,15),CPLL(10,11,15),
c GAMMAGG(10,11,15),GAMMATP(10,11,15),GAMMALL(10,11,15),
c MACHGG(10,11,15),MACHTP(10,11,15),MACHLL(10,11,15),
c VISCGG(10,11,15),VISCTP(10,11,15),VISCLL(10,11,15),
c PRGG(10,11,15),PRTP(10,11,15),PRLL(10,11,15),
c PRES(10),MIX(11),RATIO1(15),RATI02(14)

LABELED COMMON STATEMENTS FOR H2/02 PERFORMANCE AND PROPERTIES

COMMON/ISPTAB/ISPLL,ISPGG,ISPTP
COMMON/TSTAGTAB/TSTAGLL,TSTAGGG,TSTAGTP
COMMON/CSTARTAB/CSTARLL,CSTARGG,CSTARTP
COMMON/CPTAB/CPLL,CPGG,CPTP
COMMON/GAMMTAB/GAMMALL,GAMMAGG,GAMMATP
COMMON/MACHTAB/MACHLL,MACHGG,MACHTP
COMMON/VISCTAB/VISCLL,VISCGG,VISCTP
COMMON/PRTAB/PRLL,PRGG,PRTP
COMMON/GROUP1/PRES,MIX,RATI01
COMMON/GROUP2/RATI02
COMMON/ENTHALPY/LEVEL1,LEVEL2,LEVEL3,DELTAHMIX

LABELED COMMON STATEMENT FOR "GASP"

COMMON/PROPTY/KU,KZ,DL,DV,HL,HV,S,SL,SV,CV,CVL,CVV,CP,CPL,CPV,
I GAMMA,GAMMAL,GAMMAV,C,CL,CVP,MU,MUL,MUV,K,KL,KV,SIGMA,
2 EXCL,EXCV,EXCESK
Source code continued on the next page >

17

APPENDIX F: Parts of RESSAP Source Code Relevant to MPI (Cont'd)

C Notes on DATA statements for hydrogen/oxygen performance
C and property tables
C PRES pressure is in psia
C MIX - mixture ratio (O/F)
C RATIO1 RATIO1 data are the natural logarithms of thrust
C chamber contraction and nozzle expansion area ratios.
C Contraction ratios are negative, expansion ratios are
C RATIO2 RATIO2 data are the natural logarithms of nozzle
C area ratios.
C

C

positive
expansion

DATA PRES/20.O,50.O,100.O,200.O,300.O,400.O,500.O,
C 1000.0,2000.0,5000.0/

DATA MIX/2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.O,11.0,12.0/
DATA RATI01/-1.60944,-l.38629,-1.09861,-.69315,.O,.69315,

C 1.09861,1.38629,1.79176,2.30295,3.40120,4.09434,4.60517,
C 5.70378,6.39693/

DATA RATI02/.O,.69315,1.09861,1.38629,1.79176,2.30295,
C 3.40120,4.09434,4.60517,5.70378,6.39693,6.90776,7.09008,
C 7.31322/

NAMELIST/DEFALT/THETAC,THETAN,EPSRNA,EPSRNE,EPSE,EPSC,LSTAR,LF,
1 B2BLDH,BLDTKH,WRAPH2,HOVTH2,NSSH2P,STGSH2,BLDSH2,EPSH2,UTMH2P,
2 INRLBH,RLABYH,INNLH,NLH,INCLRH,CLRLH,
3 B2BLDO,BLDTKO,WRAPO2,HOVTO2,NSSO2P,STGSO2,BLDSO2,EPSO2,UTMO2P,
4 INRLBO,RLABYO,INNLO,NLO,INCLRO,CLRLO,
5 KTRBH,NSTGH,UTMH2T,AOVRDH,CNOHNH,ALPH2H,CLRH,
6 KTRBO,NSTGO,UTMO2T,AOVRDO,CNOHNO,ALPH20,CLRO

NAMELIST/REINPT/FVAC,DPRES,DMIX,DRATIO,PINO2B,TINO2B,PINH2B,
1
2
3
4
5
6
7
8
9

TINH2B,PIOPUPTIOPUP,P1HPUP,T1HPUP,DPOIJF,DPHIJF,DPCOOL,QCOOL,
RPUH2P,RPMO2PWTBPF,WOTBPF,DPHCVF,DPPUOF,DPOCVF,ETADH2,ETAD02,
THETAC,THETAN,EPSRNA,EPSRNE,EPSE,EPSC,LSTAR,LF,
B2BLDH,BLDTKHWRAPH2,HOVTH2,NSSH2P,STGSH2,BLDSH2,EPSH2,UTMH2P,
INRLBH,RLABYH INNLH,NLH,INCLRH.CLRLH,
B2BLDO,BLDTKOWRAPO2,HOVTO2,NS_O2P,STGSO2,BLDSO2,EPSO2,UTMO2P,
INRLBO,RLABYO,INNLO,NLO,INCLRO,CLRLO,
KTRBH,NSTGH,UTMH2T,AOVRDH,CNOHNH,ALPH2H,CLRH,
KTRBO,NSTGO,UTMO2T,AOVRDO,CNOHNO,ALPH20,CLRO

C
MPI related calls *************************

call MPI INIT (ierr)
call MPI-COMM SIZE (MPI COMM WORLD, nprocs, £err)
call UPI-COMM-RANK (MPI-COMM WORLD, my_id, ierr)

C gets number o7 procecess and-its id, it can now
C compare my_id with control_id if need be
C

C
End of MPI related call= *********************

18

APPENDIX F: Parts of Source Code Relevant to MPI (Cont'd)

HYDROGEN PUMP DRIVE TURBINE SIZING AND PERFORMANCE

C*******

C
C
C
C
C
C
C

This cai1 is replace by MPI message sent to TURBPD ********C
C

CALL TURBPD(KFLUID,KTRBH,KINPT,NSTGH,PIHTRB,T1HTRB,HPHPMP, C
1 WTRBH,RPMH2P,UTMH2T,AOVRDH,CNOHNH,ALPH2H,CLRH,HPTRBH,DMTRBH, C
2 UMTR8H,UCTRBH,ETATSH,ETATTH,HIHTRB,D1HTRB,P2HTRB,T2HTRB, C
3 H2HTRB,D2HTRB,S2HTRB,KTYPEH,ANSQDH,ADMH,Z1H,CP1H,GAM1H, C
4 UTTRBH,HTR1H,HTR2H) C

C
C************* end of replaced subroutine call ***********************
C
************************* MPI related calls *************************
C

C prepare the message as one integer value, and process id = 2
z msg = KFLUID
iB proc= 2

C Thls sets the receiving process id to 2, which is TURBPD
i_tag = I

C This sets the position of the argument passed to TURBPD
C

call MPI_SEND (i_msg, I, MPI INTEGER,
* id_proc, __tag, MPI COMM WORLD, ierr)

C

C this sends the first argument, KFLUID, as the message to the
C process TURBPD whose process £d is 2
C there are various alternatives, none too attractive (!), for
C sending all other argument values to the TURBPD process
C see the discussion in the Section 2.4 for more information
C

call MPI RECV (s_msg, 20, MPI_CHARACTER,
* O, i_tag, MPI COMM WORLD, status, ierr)

C receive a 20-char message, perhaps as-an acknowledgment
C
********************** End of MPI related calls *******************
C
C NOTE: The rest of the source code for RESSAP
C .,o

C

C Any other call to TURBPD will be replaced by a message send in
C the same way as was done for this cai1
C ..,

C
************************* MPI related calls *************************

call MPI_FINALIZE(Ierr)

C*********************

STOP
END

End of MPI related calls *********************

19

